• This field is for validation purposes and should be left unchanged.
home_icon-01_outline
star
  • Earth.Org Newsletters

    Get focused newsletters especially designed to be concise and easy to digest

  • This field is for validation purposes and should be left unchanged.
Earth.Org PAST · PRESENT · FUTURE
SHOP Support

Water underpins a country’s development, and China- one of the fastest-growing economies- is of no exception. Water supports the country’s 1.43 billion population and its booming industries, but it is limited and unevenly distributed. In 2005, Former Chinese premier Wen Jiabao warned of the danger of water shortages which he said would threaten the ‘very survival of the Chinese nation’. Climate change is diminishing accessible water resources in China, triggering a severe water shortage crisis within the national boundary. Massive water projects are being constructed to deal with this shortage crisis, bringing a new range of environmental, social and geopolitical challenges.

Home to 20% of the global population, China has only 6% of the world’s total freshwater resources. 2014 statistics from the World Bank indicate that the total renewable water resources per inhabitant is only 2 018 cubic meters each year- 75% less than the global average. 

Causes of the Water Shortage Crisis in China

Climate change plays a key role in the water shortage crisis in China. For thousands of years, civilisations along the Yangtze and Yellow Rivers fed on the glacial meltwater from the Qinghai-Tibetan Plateau – also known as ‘The Third Pole’. Once a stable source of river flow, the ice mass is now less capable of supplying glacial melt with fresh snow and ice, since global warming has raised the temperature of the glacial region by 3- 3.5 degrees Celsius over the past half-century. A study by Greenpeace in 2018 revealed that 82% of China’s glaciers have retreated and more than one-fifth of the ice cover has disappeared since the 1950s. Consequently, glacial run-off into the Yangtze alone has been reduced by 13.9% since the 1990s, lessening freshwater availability. Greenpeace anticipates the shortage will become ‘dramatically’ acute when the glaciers reach their ‘peak water’- when the rate of water consumption surpasses water supply- which could happen as early as 2030.

Meanwhile, increasing temperatures have also changed atmospheric circulation. It has become more difficult for humid summer monsoons to reach northern and inland areas, resulting in more unreliable rainfall patterns. This abnormally dry weather has been experienced by Beijing in recent years: between October 2017 and February 2018, no precipitation, including rain and snow, was recorded in the metropolis. The 116-day drought is unprecedented in the country’s record. 

The country’s uneven resource distribution further exacerbates the scarcity problem: 80% of water is concentrated in South China, but the North is the core of national development. For instance, President Xi Jingping’s JingJinJi Project initiated in 2014 integrates three heavily industrialised Northern provinces- Beijing, Tianjin and Hebei- as a single megalopolis to compete with other world-class economic regions such as the New York Tri-State Area. The estimated population of the regions combined is 130 million, whereas the water available for consumption annually per person in the three provinces stands below 184 cubic meters (Hubei is below 100) as illustrated by the China Statistical Yearbook (CSY), far below the 500 cubic meter standard of water scarcity. Water is insufficient in the North and intense development is only putting more pressure on water demand. 

The combination of inefficient water management and widespread water pollution has rendered China unable to effectively supply enough consumable water in some provinces; this is not taking into consideration the demand for water in future urbanisation. 

You might also like: China Sets Goal For Climate Neutrality By 2060

Earth.org tackling China's water shortage crisis
A graph illustrating that renewable water resources in China have been steadily declining since the 1960s (Source: Knoema). 

The Solutions to the China Water Shortage Crisis

The pressing water shortage crisis has forced China to develop various water schemes to boost water availability in dry regions; the South-North Water Transfer Project (SNWTP) is arguably the most well-known. With its conceptualisation traced back to the 1950s, the project is the largest and most expensive engineering work in the country; it is expected to cost $62 billion by completion in 2050, almost double the Three Gorges Dam Project. 

The SNWTP aims to alleviate the water shortage problem in northern China by moving water from the Yangtze River in the South through 1 500 kilometre-long canals. The East and Middle routes- each taking 10 years to build- have been in service since 2013 and 2014 respectively and are capable of transferring 20.9 billion cubic meters of water each year. The West Route is expected to be completed by 2050. 

However, the project opens the door to environmental, social and geopolitical challenges. 

New Environment Problems

As construction advances across the country, natural landscapes are harmed, leading to biodiversity loss. All three routes will change natural hydrology on an unprecedentedly large scale; the East Route rises the water level of the four lakes it passes through. A study in 2009 estimated that aquatic plants will decline by up to 0.25 million tons in Dongping Lake surrounding the construction of the East Route. Freshwater clams, whitebaits and algae are among those species that will be affected. 

It is not the first time China’s water schemes have led to the disappearance of local species. In the last decade, the construction of the Three Gorges Dam has permanently changed the Yangtze’s landscape, damaging the habit of the already-endangered baiji dolphin and rendering them ‘functionally extinct’ at the end of 2006. 

The same study also warns of the potential of southern aquatic species invading northern waters; increasing global temperatures are making waters at higher latitudes habitable for southern species, threatening the biodiversity of the water-receiving regions. Research in 2017 warned of the invasion potential of three southern aquatic plants, namely alligator weed, water hyacinth and water lettuce; alligator weed has already invaded Shandong Province in Northern China. The water diversion project is further facilitating this invasion. 

The project may change hydrology and microclimate in the region; a 10-year study analysing the potential climatic impacts of the Middle Route predicts that the sudden influx of water may alter local evaporation and precipitation rates by bringing more frequent convection (short and intense rain) to the area. Because rain patterns affect temperature, the researchers predict regional microclimate will be modified as the project progresses. 

Social Conflict and Political Instability

The project diverts natural resources to one mega-region at the expense of another, adversely impacting the social well-being of the southern water-supplying region and challenging China’s domestic stability in the long term. 

China’s provincial water disputes provoked the ‘blocking dam’ incident of 2001. Industries in the upstream Jiangsu province had been degrading the shared water of the Zhejiang province since the 1990s. A decline in usable water triggered Zhejiang residents to protest by sinking boats in the waterway to block the polluted water, revealing the provincial governments’ ineffective cooperation on resource management. If there is any public discontentment due to the SNWTP, it will not be merely provincial but regional, which could compromise the country’s national governance. 

The project forces about 330 000 people to relocate to allow for the expansion of the Danjiangkou reservoir on the Middle Route. Insufficient compensation and lack of employment opportunities have created difficult lives for the displaced population, igniting a number of revolts including violence against immigration officials and obstruction of main roads, as reported by China Daily. Coercive displacement is typical of command economies in communist countries like China, North Korea, and in the past, the Soviet Union, whereby the distribution of natural and human resources is manipulated by the central government to maximise national interests, while sacrificing individual rights. Forced evictions occur with most infrastructure projects in China, and is a constant source of mass protests. 

The water supply of the Yangtze Basin in Southern China relies on natural precipitation and glacial melt. As climate change accelerates Himalayan glacial retreat and brings abnormal weather, Southern China may become equally vulnerable to water insecurity; already, south-west China experienced a severe drought in 2011, which impacted the drinking and irrigation water of more than 60 million people. The SNWTP takes water from the Yangtze River and reduces its river discharge; a decline in groundwater may result in seawater flowing inland in dry seasons, contaminating the freshwater aquifers of the Yangtze Delta.

Military Implications and International Relations 

China’s South-East Asian neighbours are equally concerned by China’s response towards its water issues. Chinese territory hosts the headwaters of many important regional rivers. For example, the Mekong originates from the Tibetan Plateau and flows through Western China before reaching Laos, Thailand, Vietnam and Myanmar. The  Brahmaputra also flows across the boundary of China, Bangladesh and India. Therefore, China’s changes upstream can significantly impact the water of downstream countries. 

China is often feared to control regional water resources, shown in its reluctance to sign international agreements on cross-border water management. The country can seize water sources without any military force; because the rivers originate within its territory, they are seen as China’s natural assets. The SNWTP reinforces this impression- despite the inclusion of transboundary rivers such as the Mekong, the Nu River and the Brahmaputra in the West Route, China keeps the project unilateral without seeking input from the affected countries. As a study has analysed, any physical resistance by these countries would be deemed as military aggression, forcing them to comply so as not to compromise regional peace and water sovereignty. 

While the West Route is currently in its planning stage, there is already tension and mistrust by residents. In late 2017, the ‘Red Flag River Project’- a proposal by Chinese scientists and engineers to divert Himalayan glacial water to China’s arid West- created panic among India’s media, since Himalayan glacier melt is an important source of water for two of India’s most important rivers. Although the project was found to be fraudulent, India’s response illustrated its mistrust of China’s use of the region’s water resources.

Territorial issues have existed since the Sino-Indian War in 1962, exacerbated in recent times by China’s mining operations in India’s Lhunze county and rapid military buildup in Ladakh. By August 2019, the two countries had held 21 rounds of Special Representative talks concerning boundary conflicts. The large-scale water diversion project, which involves shared natural resources, may stoke future disputes. 

China’s SNWTP is at best a short-term solution, preventing the government from correcting man-made problems and creating new challenges in the intra- and international community. Experts suggest alternative solutions, such as proper utilisation of local water resources through raising the water price and improving water management bodies. 

Featured image by: Boris Kasimov

A megadrought is an extreme and prolonged drought that lasts for 20 years or longer. Human activities, such as burning fossil fuels and deforestation, trap more energy from the sun in the atmosphere and are playing a critical role in exacerbating the drought, consequently drying the Southwest areas of the US.

What causes a megadrought?

Radiative forcing is one of the causes of a megadrought, which occurs when the Earth’s atmosphere captures more energy from the sun. The more energy retained in the atmosphere, the higher the rate of water evaporation. 

Physical Risk

Droughts are one of the most expensive natural disasters, and it is estimated that the average annual loss in the US in 2018 was between USD$10 billion and $14 billion. There are few studies that have estimated the monetary losses to the agricultural sector caused by drought. Among these studies, one suggested that the megadrought in the US from 1988 to 1989 had caused the loss of crops worth $15 billion. Analysts at the University of California evaluated the economic impact of the California drought on the US’s agricultural sector from 2014 to 2016 (the most recent megadrought). They disclosed significant losses in crops, dairy products and livestock, as well as additional groundwater pumping costs, with a combined loss of approximately $3.85 billion. At the same time, some researchers have disclosed that the reduction in crop yields has led to higher crop prices to try and offset the loss from this drought on agricultural revenue.

Efforts to Mitigate Physical Risk

International Water Management Institute (IWMI)’s efforts to support nations and regions preparing for climate shocks (such as a megadrought) involve enhancing farmers’ resilience. In recent years, the Institute developed an index-based flood insurance (IBFI) product to compensate farmers whose crops have been ruined as a result of floods.

The technology uses satellite data and modelling tools to estimate when the depth and duration of flooding exceeds predefined limits, triggering automatic payouts. Between 2017 and 2019, the IBFI scheme supported insurance payouts in India ($22 000) and Bangladesh ($31 500) to 1 306 out of 2 300 eligible farming households, increasing their resilience to floods and minimising their vulnerability to natural hazards.  A new trial seeks to build on the success of IBFI by bundling SMS-based weather information, advice on crop and water management methods, and fertilisers together with the insurance product. The trial covered 1 000 households, of which 450 benefited from an insurance payout of $12 500 each.

How Unilever is Mitigating its Water Risks 

Unilever is one of the largest fast-moving consumer brand companies in the world with over 400 different brands in almost 200 countries. Unilever is currently focused on creating ‘sustainable products’ for their consumers, and their vision is ‘to make sustainable living commonplace’. They created the Unilever Sustainable Living Plan to realise this vision. Unilever identified key issues and topics on a materiality matrix, and prioritised them based on current stakeholder importance and short-term business impact.

You might also like: Climate Hypocrite: Canada Continues To Prop Up Fossil Fuels

megadrought
Unilever’s materiality matrix, ranking their priorities based on current stakeholder importance and short-term business impact (Source: Unilever Materiality Matrix 2019/2020.

Unilever set three general goals: Improving health and well-being for more than 1 billion, Reducing environmental impact by half and enhancing livelihoods for millions. To improve its water usage, Unilever has pledged to halve the water associated with the consumer use of its products by 2020 and maintain the water abstraction levels for production at or below 2008 levels by 2020. In 2019, they exceeded their second goal, where the water abstraction levels are 47% lower compared to 2008. However, they failed to meet the first goal to halve consumer water consumption- water consumption is actually 1% greater in 2019 than in 2010.                       

Unilever’s manufacturing department does an exemplary job of meeting these goals. However, their products department greatly lags behind to meet these goals. Even though the manufacturing department does not pledge to halve manufacturing emissions, water consumption or waste, it does so for all three areas. The explicit goals for the products department to halve product emissions, water consumption and waste are more difficult to achieve. However, the product department fails to even maintain the level of emissions and water impact at 2010 levels. Unilever needs to address these product department weaknesses to better align with their vision to make sustainable living commonplace.

What Governments Are Doing to Mitigate Water Risk

In 2017, the US government developed a Global Water Strategy to aid the global water crisis. The strategy contains four main strategic objectives revolving around conserving and providing clean water sources to countries with high water risk.

The first objective is to promote sustainable access to safe drinking water and sanitation services, and to adopt key hygiene behaviours. The US aims to increase the amount of sources for safe drinking water and sanitation, while decreasing the mortality rate related to unsafe drinking water and unhygienic living standards.

The second objective is to encourage the sound management and protection of freshwater resources. This strategy primarily addresses physical water risk, in particular, flooding and groundwater deficiency. The US aims to support access to water supplies and protect ecosystems that provide these water supplies. It also focuses on improving preparedness for water-related disasters such as floods and megadroughts. 

The third objective is to reduce conflict by promoting cooperation on shared waters. This strategy aims to resolve the issues of river basins and aquifers shared between multiple countries without formal agreements. This is done by increasing mediation activities between such countries through the creation of  designated institutions to address these issues.

The last objective is to strengthen water sector governance, financing and institutions. This is done by improving upon environmental policies, building partnerships with other international organisations to support the development of water resources and increasing the amount of private and public resources mitigating water issues.

The US government has set various approaches to fulfil these four strategies. Most notably, it plans to use its scientific and technical expertise to assist countries that require the most assistance for countering water risk. It also plans to mediate with governments and organisations to better understand the needs of the community while raising funds necessary for  supporting the development of water and sanitation infrastructures. 

The strategy lists 13 ‘High Priority Countries’ that have high levels of water risk and assistance needs. Such countries include Afghanistan, Haiti, Indonesia and Uganda. The US will focus their attention on these countries, and have deliberated country-specific plans to better help these countries.

However, there are potential difficulties and risks that should be addressed. This is especially apparent for the third objective, where the US aims to reduce conflict by promoting cooperation on shared waters. It is extremely difficult for countries to agree and share water resources, especially in high-risk countries. Even if the US government is able to bring the conflicting parties together to discuss, it is unlikely that a formal consensus can be made immediately. In fact, greater conflict may arise when the two parties discuss formal conditions for cooperation. 

Drought and Climate Change

China suffers from both too much as well as too little water due to climate change. Southern parts of China and coastal cities are often flooded from typhoons, storm surges or river/pluvial floods while certain areas experience extreme drought; for example, the middle and the lower reaches of the Yangtze River is characterised by alternating periods of drought followed by floods.

Over-extraction of groundwater and falling water tables are significant problems in China- there is an average annual groundwater depletion rate of more than 10 billion cubic metres and water resource usage is set to peak in 2030 when the population also peaks. Groundwater extraction can lead to land subsidence- 60 000 sq kms of the ground surface in the country has sunk, with more than 50 cities suffering from severe land subsidence. Further, Asia’s ten largest rivers, including the Yangtze, Yellow, Mekong and Ganges, are fed by seasonal melting, which is being affected by the climate crisis.

Existing drought models are very simplistic and therefore lead to wrong predictions. Moreover, rainfall data is not collected in most regions in Asia. It is therefore very difficult to make any drought analysis on a meaningful grid case. Intensel Limited, an Asia startup focusing on physical climate risk assessment and predictions, models drought using a combination of several factors including snowmelt and other climate variables. In addition, Intensel’s dynamic climate models and AI technology is able to generate missing historical data, for example, granular rainfall data. Organisations such as these are vital, as the climate crisis is making these predictions even more difficult with changing trends, increasing variation of weather. 

This post was written in collaboration with Entela Benz, Adjunct Associate Professor at HKUST and CEO of Intensel.

Egypt, Ethiopia and Sudan are unable to resolve a dispute over water rights amid the development of the Grand Ethiopian Renaissance Dam in Addis Ababa on the Blue Nile river. Seasonal rains are starting to fill the dam, which is set to become Africa’s largest hydroelectric power plant and two-thirds of the dam has already been built, prompting researchers to urge the countries to move faster to resolve the conflict. 

What is the Grand Ethiopian Renaissance Dam?

The Grand Ethiopian Renaissance Dam is Africa’s largest hydroelectric dam able to hold approximately 4 billion cubic meters of water, which constitutes more volume of water than the entire Blue Nile. 

Benefits of the Grand Ethiopian Renaissance Dam

Half a century in the making, the US$4.8 billion project is a source of national pride as it will be able to generate 6 000 megawatts of electricity to tens of millions of Ethiopians. The infrastructure, which was paid for through taxes, promises reliable electric power, a boost for industry and new jobs, components which are critical to nearly half of the country’s population who lack access to electricity. 

Problems of the Grand Ethiopian Renaissance Dam

For Egypt, however, the dam is raising concerns over how it will affect the Nile River. Over 90% of Egypt’s nearly 100 million people live along or around the Nile, which supplies most of the country’s water. Egypt fears the dam will disrupt the Nile’s flow of water, particularly during times of drought, affecting the lives of many who depend on it. Currently, only Egypt and neighbour Sudan have any rights to its water, further complicating efforts at diplomacy. However, this control depends on what comes downstream, over which it has no control. 

Egypt, Ethiopia, and Sudan are currently unable to reach an agreement on how to share the water among the three countries, the measures that should be enforced to protect the Nile’s flow of water, and what will happen in the event of a drought. 

The nations have resolved some key issues, however, including the volume of water and time needed to complete the fill. However, there is still disagreement as to what would happen in the event of a drought, as well as some other technical and legal issues. 

In the case of a drought year, the filling period would extend to seven years, but they have yet to agree on what to do in this case. The countries have agreed that when the flow of Nile water to the dam falls below 35 to 40 billion cubic meters per year, that would constitute a drought. In such an event, Egypt and Sudan want Ethiopia to release some of the water in the dam’s reservoir. Representatives of both countries say that this would still allow Ethiopia to continue generating electricity, but Ethiopia wants the flexibility to decide how much water to release during drought conditions because more water equates to more power per unit of water. 

On July 15, Seleshi Bekele, Ethiopia’s minister of water and irrigation, is reported to have said on state television that “the filling of the dam doesn’t need to wait until the completion of the dam,” leading many to believe that Ethiopia has begun filling the dam. However, the government clarified that the flow of water into the reservoir was because of heavy rainfall and runoff.

Egypt has previously said that if Ethiopia needs electric power, then it should involve a third party, such as the World Bank, in financing Ethiopian power stations. Alternatively, Egypt could potentially share electricity with Ethiopia, similar to its arrangements with Sudan. Egypt says, “One nation’s need for electricity is pinned to another nation’s need for water.” 

An Attempt at Diplomacy 

Egypt, Ethiopia and Sudan have been engaged in years of negotiations and talks which have failed to produce a deal that satisfies the three nations.

On June 26, following another round of negotiations, Egypt, Ethiopia and Sudan pledged to reach a deal within two weeks- in which Ethiopia agreed to withhold from filling the dam during the period. As July and August are regarded as the summer’s ‘rainy season’, Ethiopia is eager to start filling the reservoir in order to maximise utilisation of the forthcoming rain. From the perspective of the Ethiopian government, if it misses the summer’s rainy season, the country would have to wait another year to start filling and operating the dam. 

Abiy Ahmed, the Ethiopian prime minister, stated his country was ready to “mobilise millions” in order to defend the dam, while Abdel Fattah al-Sisi, the Egyptian president, stressed Egypt would do anything to protect the rights of the Nile river. In the past, Egypt has said that any attempt by upstream nations to take what it regarded as Egyptian water would result in war. 

An official water-sharing agreement does not exist between Ethiopia and Egypt. Under the 1959 Nile Waters Agreement between Egypt and Sudan, Egypt extracts 55.5 billion cubic meters of water from the Nile annually, and Sudan 18.5 billion. This agreement was established not long before Egypt began constructing the Aswan High Dam, the country’s own ‘mega dam’. Ethiopia, however, was excluded from the negotiations that constructed the agreement, and for that reason, does not recognise it. 

Egypt Threatens Ethiopia?

The tension between the countries has been described as toxic- Egypt has accused Ethiopia of stealing their water supply with the intention of drying up their country, and Ethiopia has portrayed Egypt as a neo colonial power treading on national sovereignty

Egypt wants to establish a thorough deal to mediate the filling and operation of the dam that would include agreed upon drought mitigation measures. 

In February, Ethiopia dismissed an agreement produced by the US and the World Bank, following talks in Washington, on the premise that the deal was biased towards Egypt.   

Ethiopia has previously stated that it will ‘cause no significant harm’ however dismissed the notion of being bound by agreements that could govern how it operates the dam. William Davison, Ethiopia analyst at the International Crisis Group, says, “Ethiopia feels no compulsion to sign anything that could potentially disadvantage it in the future” and that “Egypt and Sudan on the other side want something that is as detailed and as binding and long-lasting as possible.”   

You might also like: What is a Carbon Border Tax and How Fair is it?

UN Involvement in Pressing for a Deal

In May, Egypt sought help from the UN Security Council to press Ethiopia to produce a deal. Sameh Shoukry, the foreign minister of Egypt, said in a speech to the Security Council, “the unilateral filling and operation of this dam, without an agreement that includes the necessary precautions to protect downstream communities . . . would heighten tensions and could provoke crises and conflicts that further destabilise an already troubled region.”

Egypt wants the final deal to have the status of any other international treaty, and would prefer a third party, such as the Afircan Union (AU) or UN, to intervene should any disputes arise. Ethiopia, on the other hand, wants disagreements to be settled between the riparian states without the involvement of foreign parties.

Latest Update 

Talks resumed over the Grand Ethiopian Renaissance Dam on August 3, but there are no updates as of yet. Follow Earth.Org for updates.

Featured image by: Hailefida

All around the world, high mountain ranges have glacial water supplies known as water towers, which account for half the global population’s freshwater supply. However, these ecosystems are highly vulnerable to subtle environmental changes and a recent report by Nature suggests that water towers may disappear in the next 30 years, threatening the water supply of nearly two billion people.

Rising global temperatures and reduced rainfall are the two main factors in the shrinking availability of water in water towers. While these areas usually act as natural reservoirs, providing populations with clean water even through droughts, less glacier ice and rapidly increasing water consumption are threatening this resource.

What are water towers?

The term ‘water tower’ describes the importance of mountains meeting freshwater needs for adjacent areas downstream. 

Mountainous regions generate higher runoff seasonally due to orographic precipitation- snow and rainfall caused by moist air rising over mountains. Due to low temperatures at high altitudes, water is stored in snow and glaciers in mountains, therefore delaying the release of water and enabling mountains to have a buffering capacity. 

What are water towers for?

This means that downstream and upstream communities have a consistent supply of water for irrigation, energy and local ecosystems from water towers. Mountain systems are also home to around 50% of the global biodiversity hotspots, containing one third of terrestrial species diversity and rich plant diversity. 

Apart from regulating the hydrosphere and biosphere, the world’s mountains provide a host of other ecosystem services such as food supply and genetic resources for agriculture and medicine, with major crops such as wheat, rice, oats and grapes having originated or diversified into multiple varieties in mountain regions. Further, various indigenous communities who live in these regions have a wealth of traditional knowledge on climate adaptation, water and land management that needs to be preserved. However, rising temperatures are reducing glacier mass and increasing the rate of ice melt in warmer months and there isn’t enough cold weather to make up for this during other parts of the year.

Importance of Water Towers

Until now, the world’s mountain systems have never been quantified according to their importance or vulnerability. Researchers set out to fill this gap and studied 78 water towers globally. They ranked mountain systems in order of their supply of water, and demand for this water from adjacent lowland communities. The water tower’s vulnerability to future shocks include factors like hydro-political tension, government effectiveness, climate change, population change, baseline water stress and projected change in GDP. The quality and quantity of these freshwater supplies are essential to large populations, especially considering that less than 1% of the earth’s water is fit for human consumption.

Water towers most threatened with future scarcity primarily exist in Asia. The most relied-upon water tower is the Indus Basin, supplying water to India, China, Afghanistan and Pakistan. 

In fact, nearly all important water towers in Asia, such as Amu Darya and Ganges-Brahmaputra, were found to be more vulnerable than mountains in other countries. This is because these regions tend to be transboundary, densely populated and have competing land use needs. Unfortunately, these factors are met with weak governance and geopolitical tension, amplified by the worsening effects of the climate crisis, leaving Asia’s water towers in a highly vulnerable state.

South America’s water towers are just as vulnerable, more so than Europe and North America. However, even mountain towers in the developed world like the Colorado River Basin, the Rhone and the Po are vulnerable to pressures such as population growth and temperature rise.

Anthropogenic changes, such as the climate crisis, have been long identified by scientists as a leading driver of unprecedented and irreversible changes in mountain systems. Mountains are warming faster than the global average- temperatures high in the Himalayas have increased by nearly 2 degrees Celsius since the start of the century, 1 degree higher than the planetary average. 

Population growth and increased consumption also deplete water resources in mountain regions. For example, the population in communities dependent on the Indus River is expected to increase by 50% in the next few decades. The human factor plays just as significant a role as reduced rainfall and higher temperatures, if not more, since human activity is proliferating these conditions.

The climate crisis will affect the shape and size of glaciers and the level, frequency and intensity of precipitation. Countries that are socioeconomically vulnerable facing issues such as conflict over water rights, such as India and Pakistan, will be hard hit by the climate crisis, even with minute changes in the hydrological cycle in mountains. 

What Are the Solutions?

Mitigating the effects of the climate crisis will be the most pressing issue of the future. If global warming increases by more than 1.5 degrees Celsius, scientists predict that 80% of water in tower storage units will evaporate by the end of this century. 

Communities affected by the inevitable consequences of changing water towers such as reduced water shortage in mountains, are already adapting. In Ladakh, located in the Indian region of the Himalayas, an engineer Sonam Wangchuk has come up with a solution to bring glaciers to people. He builds glacier stupas, small piles of ice that provide irrigation for farmers to counter shrinking glaciers and unpredictable rainfall. 

The research concludes with a call to protect Earth’s water towers with a global, mountain-specific approach, focusing on local water conservation policy and transboundary cooperation in affected countries, along with global climate mitigation actions to prevent the degradation of the cryosphere.

Increased water usage by growing populations and heightened power generation are lowering water storage units faster than the environment can replenish itself. Better managing water resources will be significant in minimising the impact of upcoming scarcity and preserving precious water for future generations. 

This piece was written jointly by Emily Folk and Lavanya Prakash.

Subscribe to our newsletter

Hand-picked stories once a fortnight. We promise, no spam!

SUBSCRIBE
Instagram @earthorg Follow Us